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We know radar reflection power is controlled by the geometry of the system, the characteristics of the antennae, and the electrical properties of the ice and reflector. For common-
offset data, many of these properties are unchanging from trace to trace, allowing us to attribute all variability in returned power to the englacial attenuation and reflector 
permittivity. However, common-offset data lack sufficient information to disentangle these two contributions, and therefore cannot uniquely identify the ice and substrate properties.
Common-midpoint radar data theoretically allow us to separate effects from ice and interface properties, but require accounting for the full complexity of the radar equation:

When these contributions to return power are removed, all 
remaining power variability should be from attenuation.

Englacial reflections result from the integrated effect of many 
sub-wavelength interfaces. The packet of interfaces over 
which the radio wave integrates changes depending on the 
source-receiver offset, leading to an unaccounted-for source of 
power variability that cannot be removed from the signal.

Attenuation rates computed using common-offset methods
fell far below those computed using CMP methods, which
consistently produced results outside of the reasonable range.

Radar data have the power to 
do more than measure ice 
thickness, as the physics of 
EM wave propagation and 
reflection are sensitive to 
electrical properties that 
co-vary with glacialogically interesting properties of the 
system (e.g., temperature and water content). With several 
unknowns controlling reflection power, clever survey design 
must be used to properly constrain the properties of interest. 
In this study, we present two of the first common-midpoint 
(CMP) radar sounding experiments conducted through thick 
ice, and attempt to constrain both the ice conductivity and 
(through that) temperature profile of the ice column. Data 
were collected with a ground-based, 3 MHz radar system.

Birefringence [B(θF)] - 
Ice is an anisotropic medium, which can drive changes in the 
polarization of EM waves during propagation. Previous work 
has shown that, for frequencies below 20 MHz, the effect on 
return power is negligible, so we ignore it here.

Antenna Radiation Pattern [A(θT)2] - 
Radar antennae do not radiate energy equally well in all 
directions, so variability in the transmitted and received 
power as a function of angle must be taken into account 
when interpreting CMP data. 
The radiation patterns for dipole antennae near the 
surface of the ice-sheet depend on the electrical 
properties of the firn column, resulting in large 
uncertainty in the introduced bias.

Fresnel Reflection Characteristics [R(θi,έ)] - 
The reflection coefficient defining dielectric contrasts in the 
subsurface depends on the incidence angle of the traveling 
wave. Uncertainty in that angular dependence (not the actual 
magnitude of the 
reflection coefficient) 
will bias the inferred 
attenuation rates.
Over the range of 
reasonable englacial 
reflector permittivity 
contrasts (10-3 - 10-1), 
the uncertainty in the 
angular dependence is 
small, making power 
correction possible.

Net Wave-Spreading Effect [S(z,έ)] - 
Spherical spreading corrections are commonly applied to 
account for changes in energy density as the area of the radar 
wave-front grows with distance. But in the presence of a firn 
column, the down-going energy 
is concentrated by refraction. 
The variability in the focusing 
with angle must be removed.

Bias Magnitude / Uncertainty:
   P-Polarized                 S-Polarized

 at 500m -          -44.9 ± 39.3 dB/km          13.7 ± 17.2 dB/km

  at 2000m -           -10.5 ± 2.8 dB/km              2.9 ± 2.2 dB/km

Bias Magnitude / Uncertainty:
   P-Polarized               S-Polarized

 at 500m -          -19.7 ± 0.0 dB/km          16.1 ± 0.0 dB/km

  at 2000m -            -4.6 ± 0.0 dB/km            4.2 ± 0.0 dB/km

Bias Magnitude / Uncertainty:
 at 500m -       6.5 ± 0.9 dB/km

  at 2000m -       1.6 ± 0.2 dB/km

Individual reflectors were picked, their reflection power was 
corrected for the biases described above (plotted in A,C), and 
the attenuation rates were computed (B,D). Full-column, depth 
averaged attenuation rates were also computed using common- 
offset methods, and provided as histograms in (A,C).

As shown in the conductivity log to the left, 
measured from the NEEM Ice Core, englacial 
reflections are unique dielectric layers are far 
thinner than the radar wavelength (~68m). As a 
result, the reflection strength is dictated by the 
interferences of many sub-wavelength layers.
When we model synthetic CMPs (figures to the 
right), we find that the effective layer thinning that 
results from the hyperbolic move-out for englacial 
layers results in enhanced destructive interference, 
on average reducing returned power with 
increasing transmission angle.

The corrections discussed here are all for a ground survey, using dipole 
antennae and a 3 MHz pulse frequency. Correction values will differ for 
surveys with a different radar configuration.
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