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Abstract 

The business cycle has been a subject of great economic interest over the past century. 

Decision making in both the public and private sector is influenced by the phase of the business 

cycle, and as a result, our ability to understand and model real economic activity is incredibly 

important. This study presents a group of linear models that attempt to explain the evolution of 

real economic activity, in an effort to determine how the inclusion of leading indicators affects 

out-of-sample predictive power. I focus on 10 potential leading indicators: interest rate spread, 

producer price index, hours worked, corporate profits, M1, M2, the Federal Funds Rate, the S&P 

500, and the Dow Jones industrial average. Using a rolling vector autoregressive structure and 

two different forecasting methods, all possible combinations of these leading indicators were 

analyzed. I found that including any of the viable leading indicator candidates in the model 

improves performance, however interest rate spread, the producer price index, and M1 yield the 

best results. With every additional variable beyond two included in the regression, the loss in 

degrees of freedom results in worse forecasts despite better in-sample fit.  
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1. Introduction 

Understanding the business cycle has been a subject of great interest to both the public 

and private sector over the last 100 years. Much of the debate during the 20
th

 century focused on 

merely defining the business cycle and determining how best to detrend it. Before the quarterly 

gross domestic product series was established, there was no obvious measure of real economic 

activity in the United States. As a result, economists began developing composite indices: 

collections of multiple economic variables that attempt to characterize the state of the economy 

as a whole. Currently, the National Bureau of Economic Research (NBER) uses information 

from observable economic variables to classify the United States business cycle, determining 

each month if the economy is in a contractionary period or expansionary period. The use of 

composite indices is still common in the field, although real gross domestic product is now the 

benchmark series for economic activity. 

When modeling business cycles, there are two general ways of determining how a model 

performs. The first is done by comparing the ex post predictions of the model to business cycle 

observations. This consists of relating characteristics of the fitted series (e.g. cycle period, cycle 

curvature, amplitude differences between cycles, and turning point locations) to those of the 

observed reference series. This type of analysis is more common in the literature, but does not 

necessarily provide any information on a model’s ability to provide accurate future predictions. 

In order to determine the ex ante predictive power of a model, it requires omitting some data 

when estimating the regression. By estimating a model using a restricted data set, it is possible to 

compare model generated “future” forecasts to the observed values that were omitted during the 

model estimation process. This type of ex ante study has been relatively infrequent, although it is 

becoming more common in the wake of the recent financial crisis.   
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Recent research has focused primarily on the co-cyclical nature of individual economic 

time series, as well as the change in economic behavior between expansions and contractions. In 

attempting to model business cycles, these two relationships become very important. Researchers 

must use the correct mathematical model to reflect the complex dynamics that drive the business 

cycles, while also including variables that contain enough information for accurate ex ante 

prediction. The use of leading indicators (variables whose cyclic behavior precedes that of the 

business cycle) is therefore an important aspect of model specification. As macroeconomists 

continue to analyze new parametric models, non-parametric models, and leading variables, they 

can more accurately predict business cycle turning points in real time.  

Using  a similar methodology to that used by Diebold and Rudebusch (1989), I test a 

wide variety of leading indicator combinations in an effort to forecast business cycle dynamics. 

While most of the literature focuses on individual leading indicators or mathematical 

specifications, very few take a systematic look at multiple leading indicators within a common 

mathematical framework. There is no literature that analyzes the relative performance of 

different combinations of known leading indicators in predicting business cycles. The focus of 

this paper is to determine, in a linear framework, which variable combinations yield the most 

accurate ex ante forecasts.  

The following five sections of this paper examine more carefully the problems of 

developing reliable forecasts for future movements in the business cycle. Section 2 provides a 

comprehensive look at the existing literature as it relates to business cycles and leading indicator 

models, while Sections 3 through 5 focus on the nature of this specific study. Section 3 details 

the data collection, preliminary data manipulation, as well as the empirical model used for 
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forecasting. Section 4 enumerates the results of the regression analysis, Section 5 indicates 

possible avenues for further research, and Section 6 concludes.   

2. Review of Existing Literature 

The literature about business cycle modeling centers largely on questions of model 

specification. There are two major issues being addressed: which mathematical framework most 

accurately reflects business cycle properties, and what variables are most useful for future 

prediction. The objective of this paper is to perform a comprehensive analysis of variable 

selection. That being said, I largely ignore the specifics of model selection in this literature 

review. A more comprehensive overview of the regime switching, Markov chain, and transition 

models prominent in the study of business cycle turning points can be found in Rudebusch 

(1996). 

The business cycle is a difficult thing to quantify, and defining a reference series for real 

economic activity can be highly subjective. Previous to the development of the quarterly gross 

domestic product series, economists analyzing business cycle characteristics were forced to 

construct their own series to describe real activity. As a result, there has been debate amongst 

academics about what data best describe true business cycle fluctuations. Layton (1997) believe 

that a composite coincident index is best for analyzing Australian business cycles, while 

Hamilton (1989) uses gross national product for the United States. Yamada et al. (2010) and 

Forni et al. (2001) believe that using band pass filtering techniques on composite indices provide 

the best measures of business cycle activity. Harding and Pagan (2002), however, show that 

growth rate in output provides a much better tool for analysis than trend deviations like those 

created using data filters. This study uses growth in real gross domestic product as the reference 

series for business cycle fluctuations. 
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 Many macroeconomic time series exhibit cyclical behavior. When these cycles are out of 

phase, past turning points in one series may be able to predict future turning points in others. 

Those data whose turning points occur in advance of the business cycle are called leading 

indicators. To macroeconomists, these cycles are of great interest, given that they have the 

potential to provide warning for future macroeconomic fluctuations.  

The act of analyzing leading indicator performance has been done a number of ways in the 

literature. Both parametric and non-parametric studies have been conducted, and leading 

indicators have been scored using event based prediction (turning points) and specific value 

prediction. This study takes a regression based approach to predicting business cycle turning 

points; much like the work done by Wecker (1979) and Kling (1987) in that I translate forecasted 

values into turning point predictions. This is different than much of the parametric analysis that 

has been done in the field, starting with the works by Auerbach (1982) and Neftiçi (1982), which 

look at value prediction. I chose to analyze model performance based on predicted turning points 

instead of values because the regressions estimated in this study are linear
1
. Linear models have 

the potential to define accurate turning points despite failing to capture intra-cycle dynamics that 

non-linear models are designed to reflect. 

Diebold and Rudebusch (1989) performed a study evaluating individual and composite 

leading indicators using a non-parametric Bayesian sequential probability recursion. Their 

methods, however, are not entirely ex ante in predicting business cycle turning points. 

Probability densities used in the turning point estimation were calculated over the entire period, 

meaning they used information a forecaster would not have in real time to make their 

predictions. Despite this flaw in their prediction methods, the evaluation method for model 

performance in this study was logically sound. Using a quadratic probability score, they were 

                                                           
1
 The reason for excluding non-linear models is discussed in detail in section 5. 
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able to quantify leading indicator model performance using the observed turning points during 

the period of interest. I adapted their probability score method to analyze rolling regression 

forecasts for use in this study. 

Variable selection for this paper was motivated primarily by previous business cycle 

forecasting studies and theory. The remainder of this section of the paper briefly examines the 

leading indicator selections of other economists, as well as their findings. Boehm and Summers 

(1999) included a wide variety of potential leading indicators in their analysis, making their 

paper a good baseline for variable selection. While their study focuses on in-sample behavior, 

they also perform a qualitative analysis of forecasting using a composite leading index. In the 

construction of their leading index, they chose to include data on hours worked, changes in 

producer prices, stock prices, changes in profitability, and price/cost ratios, believing these all to 

be useful leading indicators for business cycle dynamics. They found that using this composite 

leading index provided accurate results when forecasting future movements in real activity, 

prompting me to include many of the same series they analyzed. 

Ghent and Owyang (2010) looked at regional and national housing cycles to determine 

whether or not they behaved as leading indicators to the business cycle. They found no statistical 

relationship between city house prices and local employment levels. Ghent and Owyang actually 

found that national housing permits exhibit stronger leading indicator qualities for city level 

employment than a city’s own permits, indicating that any added forecasting strength from 

housing permit data is merely due to collinearity between housing permits and other economic 

variables. As a result, I chose not to include housing data in my analysis. 

One of the most widely studied leading indicators is the yield curve. The interest rate term 

spread, defined by the slope of the yield curve, contains information on both the real interest rate 
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and expected future inflation, two variables central to predicting movements in the 

macroeconomy. Anderson, Athanasopoulos, and Vahid (2007) found that interest rate spread 

helps significantly when trying to replicate business cycle length, amplitude, and curvature for 

the G-7 countries. Fritsche and Kuzin (2005) found that term spread, along with the real effective 

exchange rate, can provide valuable insight into future movements of the German business cycle 

both in and out-of-sample.  

De Bondt and Hahn (2010) set out to define a new composite leading indicator for the 

Euro Area. Using a set of three statistical criteria, they settled on nine different time series for the 

index: 10 year nominal bond yield, nominal stock prices, US unemployment, M1, German IFO 

(business expectations), building permits, economic sentiment indicator, consumer confidence 

indicator, and the manufacturing new orders-stocks ratio. They found that using these leading 

indicators they were able to produce reliable predictions, with the best forecasts being 4 to 8 

months in advance. Given the optimal prediction period found in their study, I structured my 

analysis to focus on results during that same range of forecasts. 

The financial crisis of 2008 has prompted quite a bit of research on business cycle 

forecasting, forcing many macroeconomists to ask whether or not leading indicators could have 

provided any advanced warning of the recently experienced economic volatility. Schrimpf and 

Wang (2010) re-examined the predictive power of the yield curve, and found that in recent years 

yield curve based forecast accuracy has been falling. Frankel and Saravelos (2010) found that the 

real exchange rate and central bank reserves proved the most useful in predicting the current 

crisis. Bunda and Zorzi (2010) found that price competitiveness and the public debt-to-GDP ratio 

both provided valuable information in predicting the tensions found in today’s financial markets.  
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Drechsel and Scheufele (2010) performed a comprehensive analysis of leading indicators 

for the German business cycle using individual time series, pooled time series, and composite 

series. They found that most models including only a single leading indicator performed poorly 

both in and out of the current recession. They do find, however, that including financial 

indicators like interest rate term spread does result in better forecasts.  

In their work, Fichtner, Ruffer, and Schnatz (2009) performed a temporal analysis of 

leading indicator models. They believed that, as a result of an increased level of globalization, 

the power of country specific leading indicators would fall over time. Their results show that 

leading indicator models were in-fact more effective at predicting changes in output in the past. 

By including international data in predictive models they were able to significantly improve 

current forecast accuracy. 

While the literature has taken a wide variety of approaches to leading indicator analysis, 

there are a few areas where current research is clearly lacking. Systematic comparisons of 

leading indicators have been performed frequently in a non-parametric setting, but rarely in a 

regression framework. Many studies have compared individual time series and composite 

leading indices, but rarely have studies considered using many individual time series in the 

forecasting process. By taking a parametric approach to leading indicator analysis, this study 

manages to fill in some of the gaps currently present in the literature. Not only do I study the 

relative performance of single leading indicator regressions and multivariate ones, the structure 

of this study allows me to determine if the different combinations of leading indicators can 

predict better than the sum of their parts. 
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3. Data and Methodology
2
 

In this paper, I study ten different economic variables in an effort to quantify their ability 

to predict changes in real GDP. The data is at a quarterly frequency, with a time period spanning 

from 1964 (Q2) to 2010 (Q2). This period was chosen based on data availability for the leading 

indicator candidates, which range from micro-level data to US monetary aggregates. For stock 

market activity, I look at the monthly closing price for the Dow Jones industrial average (DOW), 

and the S&P 500 (SP500).  For commercial activity, I selected an index for the aggregate number 

of hours worked per month (HOURS), the average monthly volume of commercial and industrial 

loans at all commercial banks (LOANS), and corporate profits (PROFITS). Finally, for macro-

level and financial data I use the producer price index (PPI), the federal funds rate 

(FEDFUNDS), interest rate spread between 10 year and 1 year treasury notes (SPREAD), M1 

(M1), and M2 (M2). The stock market data were collected from Lexis Nexus, while all other 

micro and macroeconomic data were collected from the Federal Reserve of St. Louis. 

3.1  Preliminary Analysis and Transformation 

In order to use these data for regression estimation, it is important to first determine if they 

satisfy the conditions required for time series analysis. These ten series were tested for non-

stationarity using an Augmented Dickey Fuller (ADF) test. This is done because the presence of 

a unit root has significant implications for time series regression analysis. For example, when a 

series is non-stationary, the variance of the series will increase indefinitely as it evolves over 

time. Also, parameter estimates will be biased for regressions which contain integrated time 

series.  

                                                           
2 Variable names will be italicized throughout the rest of the paper. Levels of those variables are capitalized, log 

levels are lowercase, and the first difference is denoted with a Δ. A more thorough discussion of data and data 

collection can be found in Appendix A. 
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The ADF test is conducted by first estimating the regression 

 
                        

 

  

    (1) 

Using the regression results, it is possible to determine whether or not a particular time series (y) 

evolves according to a stochastic process with a drift (α) and a trend (β). Lag length was selected 

for each test using the Hannon-Quinn Information Criterion. After estimating the regression 

defined by equation (1), I test the null hypothesis that δ=0 with an alternative hypothesis of δ<0. 

Rejection of the null hypothesis indicates that no unit root is present, and the series is stationary. 

The intuition behind the structure of the ADF test lies in the definition of stationarity; high levels 

in the previous period (represented by a positive value for the lagged term) should be, on 

average, correlated with a negative change into the next period. By finding a value for δ 

significantly less than zero, the series is shown to be stationary. 

Because of the potential for error introduced by the presence of a unit-root, performing the 

Augmented Dickey Fuller test is a necessary step before doing any further regression analysis. 

For each variable that fails to reject the null hypothesis, I take the difference of that series and 

then re-estimate the ADF regression. This process can be repeated until each of the time series 

are stationary, however for these data I did not have to go beyond the first difference to make all 

variables covariance stationary. 

Table 1 displays the results of the ADF test on the variables in levels. Note that WORK 

and SPREAD were the only two series that were able to reject the null hypothesis of a unit root at 

the 5% level. To eliminate the unit root of the other time series, either the log first difference (in 

the case of exponentially growing series) or first difference (for linearly growing series) were 

taken and the ADF test was performed again. I decided to take the first difference instead of 

using levels of the WORK series based on a visual inspection of the data. The results of the ADF 
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test for the differenced series are presented in Table 2. All series now reject the null of a unit root 

at the 5% level, and can be used for further regression analysis. 

A preliminary search for leading indicator behavior is carried out using a Granger 

causality test. The use of “causality” in the name of this test is somewhat of a misnomer; what 

the Granger causality test is good for is indicating temporal relationships between two time 

series. By definition, the Granger causality test determines whether or not the lags of one 

variable improve prediction of the current values of a second variable. While the test seems well 

suited for the type of forecasting analysis central to this study, there is no indication that 

evidence of strong Granger causality necessarily leads to better turning point prediction. In 

addition to studying leading indicator combinations, I also hope to determine whether or not it is 

accurate to assume Granger causality test results are correlated with forecast reliability. 

For each combination of series y (Δrgdp) and z (one of the leading indicator candidates), 

the Granger causality test is performed by estimating the following two regressions: 

 
              

    

   

            

    

   

 (2) 

and 

 
              

    

   

            

    

   

 (3) 

 

I defined the lag order (lmax) using the Hannon-Quinn criterion. The purpose of estimating these 

regressions is to test the null hypotheses           and          . If the b 

coefficients are found to be significant, it indicates that z partially explains the evolution of y, a 

quality referred to as “Granger causing” y. Significance in the c coefficients indicates that y 

Granger causes z. If a variable is shown to Granger cause Δrgdp, this likely means it behaves as 

a leading indicator to the business cycle. If both the potential leading indicator and Δrgdp appear 
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to Granger cause one another, they are likely coincident time series. Only variables that exhibit 

one of these two qualities will be included in the final forecasting model; those series which do 

not Granger cause Δrgdp will be excluded from further analysis.  

The results of the Granger causality test over the entire study period are presented in Table 

3. There are several aspects of the results to take note of. The first is that Δprofits are shown to 

neither Granger cause Δrgdp nor are they Granger caused by Δrgdp. This indicates that there is 

neither a leading nor lagged relationship between them, and Δprofits will not increase predictive 

power in the final regressions. I also found that ΔWORK does not Granger cause Δrgdp, so it will 

also be excluded from further regression analysis. Δdow, Δsp500, Δm1, Δm2, and Δppi are all 

shown to Granger cause Δrgdp, while none of them are Granger caused by Δrgdp. This is the 

ideal result, indicating that these five series should be strong leading indicators for the business 

cycle. SPREAD is shown to Granger cause the reference series, but is also Granger caused by it 

at the 5% confidence level. Although this could mean that SPREAD is more coincident than 

leading, it will still be included in the final regressions, in order to determine whether or not 

Granger causality test results reliably predict forecast accuracy for leading indicators. 

Following the procedure used by Wells (1999), I also performed a series of rolling 

Granger causality tests. The goal of these tests is to see whether or not the potential leading 

indicators exhibit different periods of strength in forecasting, or if the temporal relationship 

between Δrgdp and the leading indicators are constant over time. By looking at the eventual 

forecast results in conjunction with these rolling Granger causality tests, it might be possible to 

determine why certain variables perform better when used together in forecasting future business 

cycle turning points. I expect that using variables with different periods of relative strength will 

result in improved forecast performance. 
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The rolling Granger causality tests were performed two ways; once with a fixed start date, 

and once with a rolling start date. Both begin with the same sample period (Q2 1964 – Q3 1970), 

and continue to a final ending period of Q2 2010. The results are plotted in Figure 1. The first 

important trend shown in these plots is indicated by the fixed start date rolling Granger causality 

test. For most series, the leading indicators do not appear to Granger cause Δrgdp until the mid 

1970’s. I believe this is due to the small data set used for those Granger causality tests, however 

as a result I would expect that forecasts before 1980 will tend to be less accurate.  

Note how the periods of strongest Granger causality as shown by the rolling window 

differ for each series. The FEDFUNDS series shows strongest causality during the 40 quarters 

ending between 1980 and 1990, and then again in the mid 1990s, while indicators like Δppi and 

SPREAD show very weak causality in the ten years following 2000. Despite showing a Granger 

causality test p-value under 5% when including the entire data set, many of these series do not 

seem to exhibit leading indicator qualities over the majority of the study period.  

3.2  The Empirical Model and Estimation  

Time-series analysis requires the use of autoregressive (AR) models to fully capture the 

evolution of the data. The basic AR model takes the form 

 
             

    

   

   (4) 

This equation describes a linear relationship between y and its own lags, where lmax is the 

number of lags selected. To extend the above autoregressive model into a multivariate context, I 

used vector autoregressive (VAR) leading indicator models. These take the form 

 
  
            

    

   

   (5) 
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where i is the number of endogenous variables (x) analyzed in the regression,      is a vector 

containing lags of those variables, and      represents a vector of parameter estimates associated 

with each of those lagged variables. By including more lags, the in-sample fit of these models 

improves, however the standard error associated with the parameter estimates increases. This is 

something that must be kept in mind when attempting to forecast future data, because in-sample 

fit and out-of-sample predictive power are not necessarily correlated. The high standard errors 

associated with estimates involving many regressors will result in very little consistency for 

predicted future values. 

In order to determine which combination of leading indicators can best predict future 

turning points in RGDP, I must first define what qualifies as a turning point. Using one of the 

criteria laid out by Bry and Boschan (1971) for the NBER, we define RGDP peaks as  

                        

and troughs as 

                       . 

Having set this definition for business cycle turning points, the next step is to establish a method 

for turning point prediction. 

Because I am concerned with predictive power for these models, I only evaluate the out-

of-sample forecasting results for each regression. To do this, I developed a rolling regression 

structure that allows me to simulate real time forecasts for all periods between 1970 (Q4) and 

2010 (Q2). The process starts by estimating a VAR using a restricted dataset, containing only 

data from the first 25 quarters of available data (1964 Q2 – 1970 Q3). Although this starting 

period is short, it was chosen to ensure that all documented turning points between 1964 and 

2010 are included in the forecasted section of the total study period.  



Holschuh 14 
 

The values for Δrgdp and the leading indicator variables were forecasted one period ahead 

by two methods. The first method of forecasting started by estimating equation (5). From that 

result I collected a vector of the parameter estimates, as well as the standard error for the 

regression residuals (  ). Using those values, I reinserted the leading indicator values, observed 

Δrgdp, and the parameter estimates back into the equation 

          
      

    

   

   

 

(6) 

where t is the forecast period (the first one being 26), and      is the vector of observed values 

leading up to the end of the restricted regression period. After taking the sum of the product of 

parameters and variables, I added to that a stochastic error term defined by           ).  This 

forecasting technique will subsequently be referred to as Method 1. 

 The second method used a different process to incorporate a probabilistic component into 

the forecasting. After estimating the regression for the restricted data set, I stored both the 

parameter estimates and the standard errors associated with each parameter estimate (   ). Then, I 

forecasted time period t using the equation  

             

    

   

 

 

(7) 

Instead of using the defined parameter estimates for   and   , those values are drawn from the 

distributions            
 
) and        

      
 
) where the    values are the standard errors 

associated with each estimated parameter. A fundamental assumption of this study is that the 

regression residuals are normally distributed, so drawing the parameter estimates from a normal 

distribution as opposed to a uniform or f-distribution is done to maintain consistency. This 

forecasting technique will be referred to later in the paper as Method 2. 
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Using the forecast results for Δrgdp and the leading indicators at time period 26, the next 

time period (27) was then forecasted using equations (6) and (7). This process was repeated until 

5 periods had been forecasted and any observed turning points in the Δrgdp forecast were 

recorded. For this restricted, 25 period data set, the 5 period projections are performed 1000 

times to get a distribution of forecast values
3
. Figure 2 provides a graphical representation of this 

process. If t is the last period included in the regression, turning points can only be found for the 

1000 forecasts of (t+1), (t+2), and (t+3), because by definition there must be data for two periods 

following to define a turning point. 

 When 1000 5-period forecasts have been made for the 25 period VAR, the restricted data 

set is expanded by one to include the 26
th

 time period, and the process starts over. The 

regressions described in equations (6) and (7) are estimated using 26 data points, and periods 27-

31 are forecasted. The ending period for the restricted data set continues to roll forward until all 

available data is included in the initial regression. 

This means that for every combination of possible leading indicators and Δrgdp, 151 

regressions are estimated. From each regression, it is possible to predict as many as 1000 turning 

points for each of the three time periods following the restricted dataset. Because turning points 

for each time period starting with the 28
th

 are forecasted in three separate steps of the rolling 

regression (once as t+1, t+2, and t+3), as many as 3000 turning points can be predicted for each 

quarter. This analysis is performed for all 256 combinations of leading indicators, resulting in a 

just under two billion forecasted values in total
4
.  

                                                           
3 

Accuracy of forecast results would improve with a higher number of replications, however using this method, the 
forecasting process already took upwards of 30 days computing time. 
 
4
 The rolling regressions and associated forecasts were computed using the statistical programming language R. 

The code used for analysis can be found in Appendix E. 
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Previous studies using a rolling regression framework have taken different approaches to 

lag selection for each individual stage of the VAR. For consistency across forecasts, I chose to 

use a constant lag structure for all steps of the rolling regression and all variable combinations. 

Plotted in Figure 3 is a histogram of selected lag orders for a random draw of the regressions in 

the forecasting process, determined using the Hannon-Quinn criterion and normalized by the 

total number of regressions analyzed. This plot indicates that, in general, the models perform 

best when few lags are included. I chose to use one lag in each regression based on this random 

sampling. 

 In order to compare the predictive power of each of the leading indicator combinations, I 

need to be able to determine the accuracy of model forecasts. To do this, I calculate quadratic 

probability scores (QPS) for each model specification. This score compares the probability of 

predicting a turning point at each time period (defined by the number of turning points forecasted 

divided by 3000) to the probability of a turning point actually occurring. The probability scores 

can be directly compared between models to determine which variable combinations provide the 

most accurate forecasts. The equation that defines the QPS is 

     
 

 
        

 

 

   

                                                     (8) 

where    is the probability at every point in time of predicting a business cycle turning point, and 

   is a vector containing index values for whether or not a turning point should have been 

predicted (1=yes, 0=no). Accurate predictions result in lower probability scores. 

4. Results and Discussion 

This study is multifaceted in nature, so it is important to keep in mind the study objectives 

when discussing the results in detail. The primary goal of this paper is to determine which 
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individual leading indicators, and which combinations of those leading indicators, yield the best 

forecasts for future economic turning points. There are other conclusions, however, that can be 

drawn from this analysis. This paper has the potential to provide insight into the value of 

Granger causality tests in model selection, as well as methods for economic forecasting in 

general.  

The results from the two forecasting methods yielded very similar results. The QPS for the 

bivariate models are shown in Table 4
5
. SPREAD performs the best of all the variables when 

using only one leading indicator. Δppi and Δm1 also performed well across both forecasting 

methods. Curiously, Δm2 and Δloans performed quite well using Method 2, but under Method 1 

they were two of the worst predictors. FEDFUNDS and Δdow performed the worst of all leading 

indicator candidates.  

Given the theoretical understanding for why the yield curve would act as a leading 

indicator, it is no surprise that it performed the best of all candidates. The fact that both money 

supply variables performed well while the federal funds rate did not seems strange, given the 

causal link between movements in M1 and the interest rate. It is also surprising that there is a 

difference in performance between the S&P 500 and the Dow Jones industrial average, given 

that these markets are expected to move roughly together.  

By definition, the Granger causality test determines whether or not a particular time series 

is useful when trying to predict future values of a second time series. Based on the p-values  

from the Granger causality tests performed, I would have expected Δdow, Δsp500, Δppi, Δm1, 

and Δm2 to provide the best results. This was not the case; the best forecasts were generated 

using a variable that did not even show Granger causality at the 1% level. This indicates that, 

                                                           
5
 The full set of QPS for all tested models can be found in Appendix D. 
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while the Granger causality test may provide a good preliminary test for forecasting power, 

stronger Granger causality does not necessarily correlate with greater accuracy in prediction. 

On average, Method 2 provides significantly more accurate forecasts than Method 1. This 

was true across all quantities and combinations of variables. While 42 variable combinations 

performed worse than the naïve model when forecasting using Method 1 (16.4% of all variable 

combinations), only one performed worse when using Method 2. This model included only Δdow 

and Δsp500 as leading indicators.  

There was only one multivariate model across both forecasting methods which provided 

better predictions than the bivariate VARs. This model included SPREAD, Δdow, and Δm2 as 

leading indicators. Looking at the rolling Granger causality results plotted in Figure 1, there 

appear to be some relationships that might explain the increase in predictive power when they 

are all included in a single regression. Δm2 shows strong Granger causality up until around 1990, 

offsetting the spikes of no Granger causality found in the other two series. Δm2 shows high p-

values after the year 2000. This period of no Granger causality by Δm2 is compensated for by the 

high degree of Granger causality found from 2001-2006 in the Δdow series. While this analysis 

is qualitative and anecdotal, it may give credence to the idea that combining series with different 

periods of relative strength as defined by a rolling Granger causality test might improve model 

performance. This is something that should be pursued in more depth during future study. 

 Table 5 provides a breakdown of model performance by number of included variables 

across both forecasting methods. Based on the information in this table, it is clear that the 

inclusion of variables beyond one leading indicator only serves to reduce overall model 

performance. I believe that this is a result of the reduction in degrees of freedom for the 

regression as the number of parameter estimates increases. The errors associated with each 
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estimator go up, resulting in a higher variance in the predictions, which negatively offset any 

improvement in results which might come from any additional information those leading 

indicators contain. 

There are a number of caveats that should be taken into consideration when looking at the 

results of this study. There are only 13 turning points experienced during the study period, which 

will make it difficult to discern the relative performances of the different models. Even a model 

that fails to predict any turning points will produce a QPS of 0.1625. By expanding the time 

frame to include a greater number of data points, this analysis would more clearly indicate 

differences in model performance. This is difficult to do, however, because it raises the question 

of what reference series should be used prior to the construction of the quarterly RGDP series. 

A second thing to keep in mind is that this study only performed 1000 replications of each 

forecasting process. I completed the rolling regression again for several variable combinations in 

order to get a sense for the possible variability in results. After recalculating the QPS for these 

models, I found that the score changed for some models by as much as .01. While these changes 

are not dramatic, re-forecasting for all variable combinations may result in slightly different 

results. That being said, I believe the trends found in this study are robust: interest rate spread 

outperforms the other leading indicators, the more variables included in the regression the higher 

the QPS, and the relationship between Granger causality and forecast performance may not be as 

strong as theory would indicate. 

5. Directions for Future Research 

The obvious way to extend this research is to expand it into a non-linear framework. On 

the outset of this study I had hoped to include both linear and non-linear models, however I 

encountered a number of logical barriers to when attempting to do it. Throughout the rolling 
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regression, I found that not all periods tested for it exhibited non-linear behavior. Without being 

able to justify the inclusion of a nonlinearity in all steps of the rolling regression, I chose to only 

perform linear analysis. By selecting a different sample period, or including more time periods in 

the initial restricted data set of the rolling regression, this problem may be avoided. 

It would also be valuable to further constrain the quadratic probability scores for each 

possible model. This could be done one of two ways: by increasing the number of repetitions in 

the forecasting process, or by repeating the entire forecasting process multiple times to get a 

sense of the distribution of QPS for each model.  This will result in a better comparison between 

model specifications, as well as help to determine with a higher level of certainty which 

forecasting method provides the better results. 

Continued analysis of Granger causality test results would help substantially in the 

variable selection process. If it can be found that using rolling or full period Granger causality 

tests can indicate forecast accuracy for leading indicators, it will reduce the need for systematic 

leading indicator studies like the one presented in this paper. While I provide some preliminary 

insight into the meaning of Granger causality test results, there is still quite a bit that is unknown. 

One other thing this study did not address is whether or not a combined index of these 

variables might provide better predictions than using the individual time series in the regression. 

A composite index would solve any problems associated with a reduction in degrees of freedom 

caused by including more variables, while still providing any information that might be 

contained in the individual time series. It would be interesting to produce different composite 

indices using these 8 leading indicators and determine whether or not they perform better than 

the individual time series. 
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6. Concluding Remarks 

The focus of this study was to determine which combinations of variables provide the 

most information about future turning points in real economic activity. I found that when interest 

rate spread, producer price index, or money supply is included in a regression, RGDP forecasts 

are significantly better than those produced using the naïve framework. I also found that for each 

additional variable included in the model beyond one, prediction performance declines.  

Not only did this study address the issue of potential leading indicators, it also provides 

interesting insights into Granger causality and forecasting methods. I found that the temporal 

relationships tested using a Granger causality framework do not necessarily indicate anything 

about the accuracy of out-of-sample forecasts those variables might generate. While there might 

be potential in using rolling Granger causality tests to determine time periods of weak forecasts, 

more work must be done to accurately determine exactly what information Granger causality test 

results provide. I also found that of the two forecasting methods used in this study, Method 2 

produces better forecast results. 

With the advancement of computing technology and econometric techniques, there is a 

growing burden on macroeconomists to provide information to businesses and policy makers 

about expected future movements in the real activity. Given the recent volatility in the US 

economy, producing reliable forecasts becomes an increasingly difficult task. I believe that this 

study, along with the existing literature described earlier in the paper, have contributed a great 

deal to our understanding and help to develop methods for more reliable business cycle 

forecasting.  
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Appendix A: Data Description  1 

RGDP – Seasonally adjusted real gross domestic product, in billions of chained 2005 dollars. 

Can be found at [http://research.stlouisfed.org/fred2/series/GDPC96].  

DOW –The Dow Jones Industrial Average, an index of the stock prices for 30 large US public 

companies. Converted from daily to quarterly using the final closing price of each quarter. Data 

can be found at [http://www.lnstatistical.com/Main.jsp;jsessionid=449E9AE6E6637B4D5E 

1680C23106AEF8#datasets3&].  

SP500 – The S&P 500, an index of the prices of 500 large-cap common stocks actively traded in 

the United States. Converted from daily to quarterly using the final closing price of each quarter. 

The data can be found at [http://www.lnstatistical.com/Main.jsp;jsessionid=449E9AE6E6637B 

4D5E1680C23106AEF8#datasets3&].  

PPI – The producer price index for finished goods. Seasonally adjusted, and converted from 

monthly to quarterly frequency. The series can be found at [http://research.stlouisfed.org/fred 

2/series/PPIFGS].  

WORK – An index of the aggregate weekly hours worked in private industry. Values are 

seasonally adjusted, and the data has been converted from monthly to. The index is based on a 

survey conducted by the Bureau of Labor Statistics, and can be found at [http://research. 

stlouisfed.org/fred2/series/AWHI].  

SPREAD – The difference between the yield on 1-year constant maturity treasury bills (found at 

[http://research.stlouisfed.org/fred2/series/WGS1YR]) and 10-year constant maturity rate bonds 

                                                           
1
 Descriptions collected from Lexis Nexus and the Federal Reserve of Bank of St. Louis Websites. 
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(found at [http://research.stlouisfed.org/fred2/series/WGS10YR]). Both were weekly series, 

converted to quarterly using the final rate of each quarter. 

PROFITS – Corporate profits after tax, in billions of dollars. Collected by the Bureau of 

Economic Analysis. Can be found at [http://research.stlouisfed.org/fred2/series/CP.  

FEDFUNDS – Effective federal funds rate, averaged to form the quarterly series. Can be found 

at [http://research.stlouisfed.org/fred2/series/FEDFUNDS].  

M1 – M1 Money Stock in billions of dollars. Converted from monthly to quarterly. M1 consists 

of: (1) currency outside the U.S. Treasury, Federal Reserve Banks, and the vaults of depository 

institutions; (2) traveler's checks of nonbank issuers; (3) demand deposits; and (4) other 

checkable deposits. The series can be found at [http://research.stlouisfed.org/fred2/series/M1].  

M2 – M2 money stock in billions of dollars. M2 includes a broader set of financial assets held 

principally by households. M2 consists of M1 plus: (1) savings deposits (which include money 

market deposit accounts, or MMDAs); (2) small-denomination time deposits (time deposits in 

amounts of less than $100,000); and (3) balances in retail money market mutual funds 

(MMMFs). Can be found at [http://research.stlouisfed.org/fred2/series/M2].  

LOANS – Commercial and industrial loans at all commercial banks, converted from monthly to 

quarterly. Can be found at [http://research.stlouisfed.org/fred2/series/BUSLOANS].  
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Appendix B: Tables 

Table 1. – Augmented Dickey Fuller test results for levels of all leading indicators 

 
RGDP DOW SP500 PPI SPREAD PROFITS WORK FEDFUNDS M1 M2 LOANS 

P-Value 0.63 0.53 0.21 0.56 0.00*** 0.68 0.27 .02** 0.38 0.38 0.12 

    (Asterisks represent rejection of the null hypothesis [unit root present] at the 1 [***], 5 [**], and 10 [*] percent levels) 

 

 

Table 2. – Augmented Dickey Fuller test results for first differences and log first differences (when appropriate). 

 
Δrgdp Δdow Δsp500 Δppi Δprofits ΔWORK Δm1 Δm2 Δloans 

P-Value .00*** .00*** .00*** .00*** .00*** .00*** 0.02** 0.04** .00*** 

       (Asterisks represent rejection of the null hypothesis [unit root present] at the 1 [***], 5 [**], and 10 [*] percent levels) 

 

 

Table 3. – Granger causality results over the period 1964 (Q2) to 2010 (Q2). 

 
Δdow Δsp500 Δppi SPREAD Δprofits ΔWORK FEDFUNDS Δm1 Δm2 Δloans 

Granger Cause Δrgdp 0.00*** 0.00*** 0.02** 0.01** 0.16 0.26 0.00*** 0.03** 0.02** 0.09* 

Are Granger Caused by Δrgdp 0.26 0.61 0.14 0.00*** 0.44 0.00*** 0.00*** 0.13 0.24 0.00*** 

     (Asterisks represent rejection of the null hypothesis [unit root present] at the 1 [***], 5 [**], and 10 [*] percent levels) 
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Table 4. – Quadratic probability scores for the bivariate leading indicator models across both forecasting methods. 

 
Δdow Δsp500 Δppi SPREAD FEDFUNDS Δm1 Δm2 Δloans 

Method 1 0.144 0.138 0.135 0.131 0.151 0.137 0.145 0.140 

Method 2 0.153 0.139 0.137 0.127 0.145 0.138 0.129 0.122 

 

 

Table 5. – Breakdown of model performance by number of included leading indicators. 

Number of Leading Indicators               

  1 2 3 4 5 6 7 8 

# of models which perform 
worse than the naïve model 

0 1 4 12 14 7 5 0 

(% of total in each category) (0.00) (1.79) (3.57) (8.57) (12.50) (12.50) (31.25) (0.00) 

Average QPS 0.1382 0.1438 0.1516 0.1567 0.1598 0.1615 0.1713 0.1622 
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Appendix C: Graphs 
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Figure 1.  - (continues on to next page) 
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Figure 1.  - (continues on to next page) 
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Figure 1. - Results of the rolling Granger causality tests for all potential leading indicators. 
Black line shows the moving window results, while the bold grey line shows the 
fixed start date results.
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Figure 2. -
These plots help illustrate the forecasting process. The black dots represent observed data 
points for RGDP (Graph A) and the % change in RGDP (Graph B). Using the first 25 data 
points, a regression is estimated. The restricted set used for this one stage of the regression is 
shown on Graph C. The in-sample fit (or ex post prediction) is plotted in blue. Using the regres-
sion paramater estimates, data is forecasted five periods into the future (ex ante prediction). The 
distribution of the 1000 forecasts are plotted in grey. These distributions are compared to the 
observed data for those time periods, which are plotted in white.  Once that series of forecasts is 
completed, the subsample can be expanded by one. This process repeats until the entire data set 
plotted in Graph C is included in the model.
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to uniformly use 1 lag for all regressions
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Appendix D:  Quadratic Probability 

Scores 

 

 

 

 

3 Variable VARs - Included Leading Indicators:         

  A,B A,C A,D A,E A,F A,G A,H B,C 

Method 1 0.1405 0.1505 0.1364 0.1487 0.1546 0.1532 0.1490 0.1387 

Method 2 0.1356 0.1256 0.1596 0.1439 0.1393 0.1306 0.1302 0.1359 

  
       

  
  B,D B,E B,F B,G B,H C,D C,E C,F 

Method 1 0.1390 0.1543 0.1432 0.1455 0.1622 0.1381 0.1482 0.1321 

Method 2 0.1430 0.1442 0.1404 0.1356 0.1308 0.1446 0.1388 0.1325 

  
       

  
  C,G C,H D,E D,F D,G D,H E,F E,G 

Method 1 0.1412 0.1462 0.1658 0.1419 0.1554 0.1480 0.1654 0.1603 

Method 2 0.1261 0.1248 0.1548 0.1506 0.1430 0.1435 0.1474 0.1427 

          
   

  
  E,H F,G F,H G,H 

   
  

Method 1 0.1664 0.1623 0.1425 0.1546         

Method 2 0.1428 0.1286 0.1305 0.1237         

 

 

 

 

 

 

 

Leading Indicator Shorthand: 

A -  sp500   

B -  PPI   

C -  Interest Rate Spread 

D -  Dow Jones 

E -  Federal Funds Rate 

F -  M1   

G -  M2   

H -  Business Loans 

2 Variable VARs - Included Leading Indicators:         

  A B C D E F G H 

Method 1 0.1383 0.1348 0.1313 0.1438 0.1513 0.1373 0.1447 0.1399 

Method 2 0.1387 0.1366 0.1268 0.1534 0.1454 0.1383 0.1288 0.1221 
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4 Variable VARs - Included Leading Indicators:         

  A,B,C A,B,D A,B,E A,B,F A,B,G A,B,H A,C,D A,C,E 

Method 1 0.1596 0.1655 0.1703 0.1697 0.1656 0.1666 0.1904 0.1715 

Method 2 0.1329 0.1432 0.1424 0.1385 0.1330 0.1332 0.1400 0.1386 

  
       

  

  A,C,F A,C,G A,C,H A,D,E A,D,F A,D,G A,D,H A,E,F 

Method 1 0.1727 0.1780 0.1557 0.1556 0.1403 0.1739 0.1535 0.1987 

Method 2 0.1305 0.1243 0.1277 0.1523 0.1505 0.1432 0.1514 0.1464 

  
       

  

  A,E,G A,E,H A,F,G A,F,H A,G,H B,C,D B,C,E B,C,F 

Method 1 0.1954 0.1733 0.1613 0.1661 0.1765 0.1635 0.1681 0.1517 

Method 2 0.1416 0.1431 0.1296 0.1313 0.1265 0.1421 0.1396 0.1382 

  
       

  

  B,C,G B,C,H B,D,E B,D,F B,D,G B,D,H B,E,F B,E,G 

Method 1 0.1591 0.1780 0.1626 0.1427 0.1546 0.1666 0.1651 0.1735 

Method 2 0.1354 0.1346 0.1512 0.1445 0.1386 0.1375 0.1453 0.1434 

  
       

  

  B,E,H B,F,G B,F,H B,G,H C,D,E C,D,F C,D,G C,D,H 

Method 1 0.1438 0.1574 0.1835 0.1546 0.1429 0.1689 0.1569 0.1525 

Method 2 0.1429 0.1371 0.1375 0.1338 0.1464 0.1439 0.1345 0.1410 

  
       

  

  C,E,F C,E,G C,E,H C,F,G C,F,H C,G,H D,E,F D,E,G 

Method 1 0.1727 0.1349 0.1341 0.1436 0.1671 0.1934 0.1758 0.1673 

Method 2 0.1407 0.1401 0.1393 0.1305 0.1294 0.1255 0.1513 0.1471 

  
       

  

  D,E,H D,F,G D,F,H D,G,H E,F,G E,F,H E,G,H F,G,H 

Method 1 0.1292 0.1794 0.1708 0.2056 0.1470 0.1379 0.1479 0.1663 

Method 2 0.1532 0.1387 0.1407 0.1352 0.1460 0.1469 0.1423 0.1268 
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5 Variable VARs - Included Leading Indicators:         

  A,B,C,D A,B,C,E A,B,C,F A,B,C,G A,B,C,H A,B,D,E A,B,D,F A,B,D,G 

Method 1 0.2030 0.1933 0.1807 0.2000 0.2011 0.1561 0.1739 0.1805 

Method 2 0.1380 0.1377 0.1354 0.1334 0.1354 0.1496 0.1416 0.1370 

  
       

  

  A,B,D,H A,B,E,F A,B,E,G A,B,E,H A,B,F,G A,B,F,H A,B,G,H A,C,D,E 

Method 1 0.1829 0.1694 0.1965 0.1943 0.1600 0.1871 0.1982 0.1612 

Method 2 0.1408 0.1430 0.1417 0.1407 0.1345 0.1348 0.1318 0.1458 

  
       

  

  A,C,D,F A,C,D,G A,C,D,H A,C,E,F A,C,E,G A,C,E,H A,C,F,G A,C,F,H 

Method 1 0.198 0.201 0.186 0.188 0.175 0.156 0.181 0.203 

Method 2 0.139 0.133 0.140 0.138 0.139 0.138 0.129 0.130 

  
       

  

  A,C,G,H A,D,E,F A,D,E,G A,D,E,H A,D,F,G A,D,F,H A,D,G,H A,E,F,G 

Method 1 0.1778 0.1777 0.1729 0.1979 0.2162 0.1765 0.1798 0.1581 

Method 2 0.1258 0.1505 0.1474 0.1517 0.1396 0.1412 0.1380 0.1455 

  
       

  

  A,E,F,H A,E,G,H A,F,G,H B,C,D,E B,C,D,F B,C,D,G B,C,D,H B,C,E,F 

Method 1 0.1755 0.1526 0.1640 0.1696 0.1434 0.1553 0.1815 0.1509 

Method 2 0.1444 0.1412 0.1281 0.1444 0.1412 0.1372 0.1395 0.1396 

  
       

  

  B,C,E,G B,C,E,H B,C,F,G B,C,F,H B,C,G,H B,D,E,F B,D,E,G B,D,E,H 

Method 1 0.1510 0.1801 0.1669 0.1573 0.1885 0.1653 0.1893 0.1549 

Method 2 0.1406 0.1389 0.1362 0.1366 0.1346 0.1485 0.1465 0.1483 

  
       

  

  B,D,F,G B,D,F,H B,D,G,H B,E,F,G B,E,F,H B,E,G,H B,F,G,H C,D,E,F 

Method 1 0.1534 0.1610 0.1709 0.1323 0.1616 0.1790 0.1696 0.1649 

Method 2 0.1395 0.1400 0.1389 0.1464 0.1456 0.1425 0.1346 0.1437 

  
       

  

  C,D,E,G C,D,E,H C,D,F,G C,D,F,H C,D,G,H C,E,F,G C,E,F,H C,E,G,H 

Method 1 0.1655 0.1580 0.1789 0.1742 0.1820 0.1389 0.1824 0.1742 

Method 2 0.1422 0.1461 0.1368 0.1381 0.1343 0.1410 0.1399 0.1394 

  
       

  

  C,F,G,H D,E,F,G D,E,F,H D,E,G,H D,F,G,H E,F,G,H 
 

  

Method 1 0.1634 0.1607 0.1477 0.1734 0.1547 0.1616     

Method 2 0.1290 0.1500 0.1506 0.1470 0.1333 0.1467     
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6 Variable VARs - Included Leading Indicators:       

  A,B,C,D,E A,B,C,D,F A,B,C,D,G A,B,C,D,H A,B,C,E,F A,B,C,E,G A,B,C,E,H 

Method 1 0.1758 0.1646 0.2024 0.1740 0.1758 0.1721 0.1986 

Method 2 0.1435 0.1383 0.1364 0.1387 0.1379 0.1396 0.1381 

  
      

  

  A,B,C,F,G A,B,C,F,H A,B,C,G,H A,B,D,E,F A,B,D,E,G A,B,D,E,H A,B,D,F,G 

Method 1 0.1676 0.1992 0.1724 0.1895 0.1722 0.1768 0.1696 

Method 2 0.1348 0.1350 0.1329 0.1484 0.1464 0.1493 0.1381 

  
      

  

  A,B,D,F,H A,B,D,G,H A,B,E,F,G A,B,E,F,H A,B,E,G,H A,B,F,G,H A,C,D,E,F 

Method 1 0.2151 0.1933 0.1517 0.1829 0.1849 0.1933 0.1723 

Method 2 0.1395 0.1372 0.1450 0.1429 0.1406 0.1338 0.1418 

  
      

  

  A,C,D,E,G A,C,D,E,H A,C,D,F,G A,C,D,F,H A,C,D,G,H A,C,E,F,G A,C,E,F,H 

Method 1 0.1900 0.1907 0.2018 0.1692 0.1917 0.1608 0.1642 

Method 2 0.1427 0.1475 0.1349 0.1379 0.1336 0.1383 0.1374 

  
      

  

  A,C,E,G,H A,C,F,G,H A,D,E,F,G A,D,E,F,H A,D,E,G,H A,D,F,G,H A,E,F,G,H 

Method 1 0.1773 0.1782 0.1672 0.1621 0.2014 0.1606 0.1673 

Method 2 0.1396 0.1301 0.1494 0.1492 0.1473 0.1362 0.1446 

  
      

  

  B,C,D,E,F B,C,D,E,G B,C,D,E,H B,C,D,F,G B,C,D,F,H B,C,D,G,H B,C,E,F,G 

Method 1 0.1646 0.1819 0.1528 0.1908 0.2044 0.1923 0.1696 

Method 2 0.1428 0.1425 0.1434 0.1382 0.1400 0.1381 0.1410 

  
      

  

  B,C,E,F,H B,C,D,E,F B,C,D,E,G B,C,D,E,H B,C,D,F,G B,C,D,F,H B,C,D,G,H 

Method 1 0.2084 0.1646 0.1819 0.1528 0.1908 0.2044 0.1923 

Method 2 0.1388 0.1428 0.1425 0.1434 0.1382 0.1400 0.1381 

  
      

  

  B,C,E,F,G B,C,E,F,H B,C,E,G,H B,C,F,G,H B,D,E,F,G B,D,E,F,H B,D,E,G,H 

Method 1 0.1696 0.2084 0.2003 0.2023 0.1741 0.1802 0.1393 

Method 2 0.1410 0.1388 0.1395 0.1352 0.1479 0.1492 0.1468 

  
      

  

  B,D,F,G,H B,E,F,G,H C,D,E,F,G C,D,E,F,H C,D,E,G,H C,D,F,G,H C,E,F,G,H 

Method 1 0.1456 0.1565 0.1967 0.2013 0.2174 0.1646 0.1374 

Method 2 0.1375 0.1451 0.1439 0.1433 0.1429 0.1354 0.1400 

  
      

  

  D,E,F,G,H 
     

  

Method 1 0.1396             

Method 2 0.1494             
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7 Variable VARs - Included Leading Indicators:       

  A,B,C,D,E,F A,B,C,D,E,G A,B,C,D,E,H A,B,C,D,F,G A,B,C,D,F,H A,B,C,D,G,H 

Model 1 0.1576 0.1864 0.2024 0.1837 0.2109 0.1982 

Model 2 0.1416 0.1431 0.1446 0.1378 0.1384 0.1365 

  
     

  

  A,B,C,E,F,G A,B,C,E,F,H A,B,C,E,G,H A,B,C,F,G,H A,B,D,E,F,G A,B,D,E,F,H 

Model 1 0.1838 0.1669 0.2028 0.1720 0.1898 0.1774 

Model 2 0.1395 0.1382 0.1387 0.1345 0.1483 0.1484 

              

  A,B,D,E,G,H A,B,D,F,G,H A,B,E,F,G,H A,C,D,E,F,G A,C,D,E,F,H A,C,D,E,G,H 

Model 1 0.1985 0.2089 0.1900 0.1633 0.1516 0.2031 

Model 2 0.1467 0.1382 0.1436 0.1425 0.1432 0.1424 

              

  A,C,D,F,G,H A,C,E,F,G,H A,D,E,F,G,H B,C,D,E,F,G B,C,D,E,F,H B,C,D,E,G,H 

Model 1 0.1752 0.1721 0.1555 0.1901 0.1614 0.1738 

Model 2 0.1359 0.1403 0.1481 0.1425 0.1417 0.1435 

  
     

  

  B,C,D,F,G,H B,C,E,F,G,H B,D,E,F,G,H C,D,E,F,G,H 
 

  

Model 1 0.1622 0.1674 0.1871 0.1859     

Model 2 0.1374 0.1401 0.1482 0.1442     

 

8 Variable VARs - Included Leading 
Indicators:       

  A,B,C,D,E,F,G A,B,C,D,E,F,H A,B,C,D,E,G,H A,B,C,D,F,G,H A,B,C,E,F,G,H 

Model 1 0.1896 0.2122 0.2116 0.1903 0.1934 

Model 2 0.1428 0.1419 0.1426 0.1385 0.1403 

  
    

  

  A,B,D,E,F,G,H A,C,D,E,F,G,H B,C,D,E,F,G,H 
 

  

Model 1 0.2229 0.2004 0.1790     

Model 2 0.1486 0.1441 0.1433     
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Appendix E: Regression Estimation Code 

################################################################### 

#                                                                 # 

#               Nick Holschuh - Integrative Exercise              # 

#            Business  Cycle  Turning  Point  Codebook            # 

#      Rolling Regressions and Probability Score Calculation      # 

#                              1/20/2010                          # 

#                                                                 # 

################################################################### 

 

Colnames=list(list(),list("QLDrgdp","QDLsp500","QDLppi","Qspread","QDLdow","Qfedfunds","QDLm1","QDLm2","QDLbusinessloans")) 

 

Timeseries=matrix(nrow=length(QDLrgdp),ncol=length(Colnames[[2]]),dimnames=Colnames) 

Timeseries[,1]=QDLrgdp 

Timeseries[,2]=QDLsp500 

Timeseries[,3]=QDLppi 

Timeseries[,4]=Qspread 

Timeseries[,5]=QDLdow 

Timeseries[,6]=Qfedfunds 

Timeseries[,7]=QDLm1 

Timeseries[,8]=QDLm2 

Timeseries[,9]=QDLbusinessloans 

 

Timeseries=ts(Timeseries,start=c(1964,2),frequency=4) 

 

############################################################### 

# We define here all possible combinations of the 9 variables # 

############################################################### 

 

combin=c(1) 

combin[2]=length(combinations2[1,]) 

combin[3]=length(combinations3[1,]) 

combin[4]=length(combinations4[1,]) 

combin[5]=length(combinations5[1,]) 

combin[6]=length(combinations6[1,]) 

combin[7]=length(combinations7[1,]) 

combin[8]=length(combinations8[1,]) 

combin[9]=length(combinations9[1,]) 

 

combinlist=list() 

combinlist[[1]]=1 

combinlist[[2]]=combinations2 

combinlist[[3]]=combinations3 

combinlist[[4]]=combinations4 

combinlist[[5]]=combinations5 

combinlist[[6]]=combinations6 

combinlist[[7]]=combinations7 

combinlist[[8]]=combinations8 

combinlist[[9]]=combinations9 
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options(warn=-1) 

 

################################################################ 

# Setting up the initial conditions for the rolling regression # 

################################################################ 

 

seedvalue=25  #Number of time periods in first regression 

forecastlength=5 #The number of time periods forecasted 

loops=1000  #The number of repititions for the forecasting process 

 

turningpointarray=array(data=0,dim=c(9,length(QDLrgdp)+3,max(combin))) 

#The array in which the number of forecasted turning points are stored 

 

 

for(i in 2:9)   #i represents the number of variables used in each regression 

 { 

 for(j in 1:combin[i]) #j represents the number of combinations of i-1 variables (RGDP is always included) 

  { 

  for(k in 1:(length(QDLrgdp)-seedvalue)) #k represents the number of steps in the rolling regression 

   { 

   tempnames=list("QDLrgdp") #Selecting the variable names for each regression 

   if(i>1) 

    { 

    for(l in 1:(i-1)) 

     {tempnames[[1]][1+l]=Colnames[[2]][(combinlist[[i]][l,j]+1)]} 

    } 

   nameslist=list(list(),tempnames[[1]]) 

   tempmatrix=matrix(ncol=i,nrow=seedvalue+k,dimnames=nameslist)#creating a matrix containing the data from QDLrgdp 

   for(m in 1:(seedvalue+k)) 

    {tempmatrix[m,1]=Timeseries[m,1]} 

   maxlag=1 

   tempts=ts(tempmatrix,start=c(1964,2),frequency=4) 

   tempvar=VAR(tempmatrix,ic="HQ",lag.max=maxlag,type="const") #Here we run the VAR on the relevant variables 

   lags=tempvar$p       #We extract the number of lags selected by the VAR 

   tempmodellist=list()      #List storing individual ARs from the VAR 

   tempnameslist=list()   #The variable names and lagged variable names used in the regression 

   for(m in 1:i) 

    { 

    tempmodellist[[m]]=tempvar$varresult[[m]] 

    } 

   for(m in 1:length(tempmodellist[[1]]$coefficients)) 

    { 

    tempnameslist[m]=names(tempmodellist[[1]]$coefficients)[m] 

    } 

   forecastnameslist=list(list(),tempnameslist) 

   forecastmatrix=matrix(ncol=length(tempnameslist),nrow=(forecastlength+1),dimnames=forecastnameslist)  

#Matrix for forecast calculations 

   for(m in 1:length(tempnameslist)) 

    { 
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    forecastmatrix[1,m]=tempmodellist[[1]]$model[length(tempmodellist[[1]]$model[,1]),m+1]   

        #Extracting the last data point used in the regression 

    } 

   for(o in 1:loops) 

    { 

    matrixsum=matrix(ncol=i,nrow=length(tempmodellist[[1]]$coefficients)) 

#A matrix used to store the product of the data points and the coefficients, 

    for(p in 1:forecastlength) #The sum of which is the forecasted value 

     { 

     for(q in 1:length(tempmodellist[[1]]$coefficients))   

#Forecasting each variable subject to their individual AR 

      { 

      for(r in 1:i) 

       { 

       matrixsum[q,r]=tempmodellist[[r]]$coefficients[q]*forecastmatrix[p,q] 

       } 

      } 

     for(r in 1:i) 

      { 

     

 forecastmatrix[p+1,r]=sum(na.exclude(matrixsum[,r]))+rnorm(1,mean=0,sd=sd(tempmodellist[[r]]$residuals)) 

#Generating the random error 

      } 

     if(lags>1)  #logic to populate the lagged values into the forecast matrix 

      { 

      for(q in 1:i)  

#For Each variable used (q), you muust populate all lagged cells of that variable (i*r+q), which in total is r+1 

       { 

       for(r in 1:(lags-1)) 

        { 

        forecastmatrix[1+p,(i*r+q)]=forecastmatrix[p,(i*(r-1)+q)] 

        } 

       } 

      } 

    

 forecastmatrix[p+1,length(tempmodellist[[1]]$coefficients)]=forecastmatrix[p,length(tempmodellist[[1]]$coefficients)] 

     } 

     for(s in 1:3)#This looks 3 time periods in the future, predicting if any will be a turning point 

      { 

      if(forecastmatrix[s,1]<0) 

       {if(forecastmatrix[s+1,1]>0) 

        {if(forecastmatrix[s+2,1]>0) 

{turningpointarray[i,seedvalue+k+s-

1,j]=turningpointarray[i,seedvalue+k+s-1,j]+1} 

        } 

       } 

      if(forecastmatrix[s,1]>0) 

       {if(forecastmatrix[s+1,1]<0) 

        {if(forecastmatrix[s+2,1]<0) 

{turningpointarray[i,seedvalue+k+s-

1,j]=turningpointarray[i,seedvalue+k+s-1,j]+1} 
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        } 

       }   

      } 

    } 

   } 

print(i) 

print(j) 

  } 

 }  

  

 

 

################################################################ 

#  Setting up the probability score calculations    # 

################################################################ 

 

 

 

turningpoints1=matrix(ncol=combin[1],nrow=length(QDLrgdp)+3) 

turningpoints2=matrix(ncol=combin[2],nrow=length(QDLrgdp)+3) 

turningpoints3=matrix(ncol=combin[3],nrow=length(QDLrgdp)+3) 

turningpoints4=matrix(ncol=combin[4],nrow=length(QDLrgdp)+3) 

turningpoints5=matrix(ncol=combin[5],nrow=length(QDLrgdp)+3) 

turningpoints6=matrix(ncol=combin[6],nrow=length(QDLrgdp)+3) 

turningpoints7=matrix(ncol=combin[7],nrow=length(QDLrgdp)+3) 

turningpoints8=matrix(ncol=combin[8],nrow=length(QDLrgdp)+3) 

turningpoints9=matrix(ncol=combin[9],nrow=length(QDLrgdp)+2) 

 

 

 

 

for(i in 1:9) 

 { 

 for(j in 1:combin[i]) 

  { 

  for(k in 1:length(QDLrgdp)) 

   { 

   if(k<27) 

    { 

    turningpoints1[k,j]=0     

    } 

   else{ 

   if(i==1) 

    { 

    turningpoints1[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==2) 

    { 

    turningpoints2[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==3) 
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    { 

    turningpoints3[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==4) 

    { 

    turningpoints4[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==5) 

    { 

    turningpoints5[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==6) 

    { 

    turningpoints6[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==7) 

    { 

    turningpoints7[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==8) 

    { 

    turningpoints8[k,j]=turningpointarray[i,k,j]/300     

    } 

   if(i==9) 

    { 

    turningpoints9[k,j]=turningpointarray[i,k,j]/300     

    }} 

   } 

  } 

 } 

 

 

probtsqps=probts[27:length(probts)] 

QPSdata=turningpointarray[,27:length(QDLrgdp),]/300 

QPSdata2=array(data=0,dim=c(9,length(QDLrgdp)-seedvalue,max(combin))) 

 

 

for(i in 1:9) 

 { 

 for(j in 1:combin[i]) 

  { 

  for(k in 1:(length(QDLrgdp)-27)) 

   { 

   QPSdata2[i,k,j]=(QPSdata[i,k,j]-probtsqps[k])^2 

   } 

  } 

 } 

 

QPSscore=matrix(0,ncol=9,nrow=max(combin)) 
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for(i in 1:9) 

 { 

 for(j in 1:combin[i]) 

  { 

  QPSscore[j,i]=(2/length(probtsqps))*sum(QPSdata[i,,j]) 

  } 

 } 

   

save.image("postrun_workspace_1000loops.RData") 
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